Matematika

Pertanyaan

Soal sbmptn exponen.. Cara ny guys.
Soal sbmptn exponen.. Cara ny guys.

1 Jawaban

  • [tex]\frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}}= \frac{a^{\frac{5}{6}}b^{\frac{3}{6}}-a^{\frac{2}{6}}b^{\frac{6}{6}}}{a^{\frac{8}{6}}b^{\frac{3}{6}}-a^{\frac{2}{6}}b^{\frac{9}{6}}} \\ \frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} =\frac{a^{\frac{2}{6}}b^{\frac{3}{6}}(a^{\frac{3}{6}}-b^{\frac{3}{6}})}{a^{\frac{2}{6}}b^{\frac{3}{6}}(a^{\frac{6}{6}}-b^{\frac{6}{6}})}\\[/tex]

    [tex]\frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = \frac{a^{\frac{1}{2}}-b^{\frac{1}{2}}}{a-b} \\ \frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = \frac{\sqrt{a}-\sqrt{b}}{a-b} (\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}) \\ [/tex]

    [tex]\frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = \frac{(a-b)}{(a-b)(\sqrt{a}+\sqrt{b})}\\ \frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = \frac{1}{\sqrt{a}+\sqrt{b}} \\ \frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = \frac{1}{a^{\frac{1}{2}}+b^{\frac{1}{2}}} \\[/tex]

    [tex]\frac{a^{\frac{5}{6}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b}{a^{\frac{4}{3}}b^{\frac{1}{2}}-a^{\frac{1}{3}}b^{\frac{3}{2}}} = (a^{\frac{1}{2}}+b^{\frac{1}{2}})^{-1}[/tex]